The Double Salt RbCl · NiCl₂ · 2H₂O

CHR. BALAREW, S. TEPAVITCHAROVA, AND J. MACICEK*

Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria, and *Institute of Applied Mineralogy, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria

Received November 21, 1988; in revised form February 22, 1989

A study of the RbCl-NiCl₂-H₂O system revealed the existence of the double salt RbCl \cdot NiCl₂ \cdot 2H₂O at 50 and 75°C. In the temperature range 25-75°C the congruently soluble salt is 2RbCl \cdot NiCl₂ \cdot 2H₂O. The salt RbCl \cdot NiCl₂ \cdot 2H₂O does not appear at 25°C. It shows a relatively narrow crystallization field at 50°C, which is considerably broadened at 75°C. The thermal behavior of RbCl \cdot NiCl₂ \cdot 2H₂O and 2RbCl \cdot NiCl₂ \cdot 2H₂O has been studied by DT analysis. © 1989 Academic Press, Inc.

Introduction

The crystal structure (1) and some magnetic characteristics (2) of the $2RbCl \cdot NiCl_2 \cdot 2H_2O$ double salt have been described. This double salt is obtained by slow evaporation of an aqueous solution of RbCl and $NiCl_2 \cdot 6H_2O$ in stoichiometric amounts (2). Data for the mixed crystals RbCl \cdot (Fe_{0.5}Ni_{0.5})Cl₂ \cdot 2H₂O isostructural with RbCl \cdot FeCl₂ \cdot 2H₂O have been reported (3). The high degree of substitution of the Fe²⁺ ions for Ni²⁺ ions suggests that conditions should exist at which the double salt RbCl \cdot NiCl₂ \cdot 2H₂O can be obtained as a separate phase.

With the aim of finding the conditions under which the salts $2RbCl \cdot NiCl_2 \cdot 2H_2O$ and $RbCl \cdot NiCl_2 \cdot 2H_2O$ crystallize from the $RbCl-NiCl_2-H_2O$ system, we have studied it within the temperature range 25–75°C.

Experimental

Synthesis

The system was studied by the solubility method using isothermal decrease of super-

saturation (4). Equilibrium was attained by continuous stirring for 2 days at 25°C and 5-6 hr at 50 and 75°C. Experiments were carried out with MERCK analytical grade reagents. Compositions of the solid phases, considered as thoroughly suction dried, were determined graphically by Schreinemakers' method (5).

Chemical Analysis

The following analytical methods were used for the determination of the liquid and the corresponding wet solid phases:

 Ni^{2+} was determined complexometrically by back titration in an acetate buffer, with xylenol orange as the indicator. The total amount of chloride was determined argentometrically, while RbCl content was evaluated as the difference between the total amount of chloride and the chlorides corresponding to the Ni^{2+} ions.

Thermogravimetric Analysis

The double salts were investigated thermogravimetrically with a Paulik-Paulik-Erdey 1500 apparatus, Type 3427, under the following conditions: weight of the sample was 400 mg; heating of the sample in air atmosphere at temperatures $600-650^{\circ}$ C was at the rate of 10° C min⁻¹; sensitivity was $\frac{1}{200}$ mg.

X-ray Measurements

Determination of the phase composition of the samples obtained was carried out with a X-ray powder diffractometer DRON-3 using Co $K\alpha$ radiation with a β filter, a scintillation detector, and a scanning speed of 2°/min.

Unit cell parameters of the synthesized single crystals were determined on a Enraf-Nonius CAD-4 diffractometer (MoK α radiation, graphite monochromator) from 25 well-centered reflections within the range $20^{\circ} \le \theta \le 22^{\circ}$.

Results and Discussion

Table I and Fig. 1 show the results obtained during the investigation of the RbCl-NiCl₂-H₂O system at 25°C. The solubility isotherm consists of three crystallization fields, corresponding to pure RbCl, to NiCl₂

TABLE I Solubility in the RbCl–NiCl2–H2O System at 25°C

Liquid (mas	phase s %)	Wet pha (mas	solid ase is %)		
NiCl ₂	RbCl	NiCl ₂	RbCl	Solid phase	
0.00	48.60	_	_	RbCl	
11.88	37.19	1.08	96.07	RbCl	
15.52	34.17	3.98	83.89	RbCl	
17.53	32.61	7.68	80.66	Eutonic	
18.18	31.68	27.25	54.10	Eutonic	
19.00	30.54	28.19	51.05	2RbCl · NiCl ₂ · 2H ₂ O	
24.00	22.75	29.12	46.82	2RbCl · NiCl ₂ · 2H ₂ O	
28.39	16.22	31.01	46.17	2RbCl · NiCl ₂ · 2H ₂ O	
32.34	11.89	31.98	46.67	2RbCl · NiCl ₂ · 2H ₂ O	
34.10	9.86	32.59	40.19	2RbCl · NiCl ₂ · 2H ₂ O	
36.71	8.30	33.49	47.42	2RbCl · NiCl ₂ · 2H ₂ O	
37.30	8.21	42.53	33.67	Eutonic	
37.97	8.12	49.52	2.52	$NiCl_2 \cdot 6H_2O$	
39.00	0.00			$NiCl_2 \cdot 6H_2O$	

FIG. 1. Solubility diagram of the RbCl-NiCl₂-H₂O system at 25°C (in mass %).

 \cdot 6H₂O, and to the double salt 2RbCl \cdot NiCl₂ \cdot 2H₂O.

Investigations of the RbCl-NiCl₂-H₂O system at 50°C (Table II and Fig. 2), and at 75°C (Table III and Fig. 3), have shown that the solubility isotherms consist of four branches each. Along with the crystallization fields of the pure salts RbCl and NiCl₂. 4H₂O at 50°C or NiCl₂ · 2H₂O at 75°C, respectively, as well as the double salt 2RbCl \cdot NiCl₂ \cdot 2H₂O, existing at 25°C and congruently soluble at all three mentioned temperatures, a crystallization field of still another incongruently soluble double salt, $RbCl \cdot NiCl_2 \cdot 2H_2O(1:1:2)$, appears. This field has not hitherto been described in the literature. At 50°C a relatively narrow crystallization field corresponds to the double salt 1:1:2, which is considerably broadened at 75°C at the expense of the 2:1:2 double salt.

The double salts have been characterized by DT and X-ray analyses in addition to the solubility diagrams and analytical methods.

Figure 4 shows DT analysis data for the double salt $2RbCl \cdot NiCl_2 \cdot 2H_2O$. The decrease in the weight of the sample by 8.5

TABLE II

SOLUBILITY	IN THE	RbCl-N1Cl ₂ -H ₂ O	SYSTEM
		ат 50°С	

Liquid phase (mass %)		Wet pha (mas	solid ase s %)		
NiCl ₂	RbCl	NiCl ₂	RbCl	Solid phase	
0.00	52.20			RbCl	
6.89	46.42	0.08	96.41	RbCl	
10.36	44.38	0.30	99.01	RbCl	
12.17	44.42	0.55	97.50	RbC1	
14.26	43.72	4.10	85.42	Eutonic	
16.21	37.32	26.98	54.18	2RbCl · NiCl ₂ · 2H ₂ O	
28.93	18.15	30.54	46.46	2RbCl · NiCl ₂ · 2H ₂ O	
32.77	14.21	32.38	38.25	$2RbCl \cdot NiCl_2 \cdot 2H_2O$	
34.64	11.97	32.00	56.90	2RbCl · NiCl ₂ · 2H ₂ O	
39.20	8.80	40.62	43.71	Eutonic	
39.19	8.70	42.71	33.81	Eutonic	
40.34	7.24	43.76	32.11	$RbCl \cdot NiCl_2 \cdot 2H_2O$	
41.30	5.98	44.63	42.20	RbCl · NiCl ₂ · 2H ₂ O	
42.38	4.25	44.99	36.01	RbCl · NiCl ₂ · 2H ₂ O	
43.33	3.77	46.27	29.33	Eutonic	
42.92	3.10	46.24	13.88	Eutonic	
43.14	2.50	57.19	0.89	$NiCl_2 \cdot 4H_2O$	
43.22	0.00	—	_	$NiCl_2 \cdot 4H_2O$	

TABLE III

SOLUBILITY	IN	THE	RbCl-NiCl ₂ -H ₂ O	System
		A	ат 75°С	

	Wet solid phase (mass %)		Liquid phase (mass %)	
Solid phase	RbCl	NiCl ₂	RbCl	NiCl ₂
RbCl	92.02	0.00	56.61	0.00
RbCl	97.42	0.56	47.65	9.35
Eutonic	65.91	18.43	47.04	11.09
Eutonic	56.00	24.21	46.85	11.12
2RbCl · NiCl ₂ · 2H ₂ C	54.12	27.20	41.00	14.68
2RbCl · NiCl ₂ · 2H ₂ C	49.72	31.08	23.39	28.60
2RbCl · NiCl ₂ · 2H ₂ C	44.34	31.68	21.00	31.10
Eutonic	41.37	38.89	20.27	32.03
RbCl · NiCl ₂ · 2H ₂ O	39.40	44.32	19.21	32.88
RbCl · NiCl ₂ · 2H ₂ O	41.07	45.87	17.73	34.08
RbCl · NiCl ₂ · 2H ₂ O	36.93	44.83	12.81	37.82
RbCl · NiCl ₂ · 2H ₂ O	37.53	44.96	10.04	40.42
RbCl · NiCl ₂ · 2H ₂ O	38.37	45.22	9.38	40.94
RbCl · NiCl ₂ · 2H ₂ O	42.10	45.81	6.37	43.05
RbCl · NiCl ₂ · 2H ₂ O	29.41	45.32	4.88	44.93
Eutonic	31.91	53.22	2.46	46.60
$NiCl_2 \cdot 2H_2O$	0.00	69.92	0.00	47.21

wt% within the temperature range $120-160^{\circ}$ C corresponds to the theoretically calculated crystalline water in the salt. The second endothermic peak of the DTA curve at 470°C is due to the melting of the anhydrous double salt.

Single crystals of the double salt $2RbCl \cdot NiCl_2 \cdot 2H_2O$ suitable for X-ray analysis were prepared at 25°C by slow evaporation of a saturated solution containing RbCl and NiCl₂, in a ratio defined by the crystallization field of this double salt and determined

FIG. 2. Solubility diagram of the RbCl-NiCl₂-H₂O system at 50°C (in mass %).

FIG. 3. Solubility diagram of the RbCl-NiCl₂-H₂O system at 75°C (in mass %).

FIG. 4. DTA and TG data for the double salt $2RbCl \cdot NiCl_2 \cdot 2H_2O$. Paulik–Paulik–Erdey 1500 apparatus, Type 3427; heating rate $10^{\circ}C \min^{-1}$.

by the investigation of the RbCl-NiCl₂-H₂O system at 25°C. The crystals are yellow with a rhombic habitus. The double salt 2RbCl · NiCl₂ · 2H₂O crystallizes in the triclinic crystal system having unit cell parameters a = 5.569(1) Å, b = 6.448(1) Å, c = 6.970(2) Å, $\alpha = 65.48(2)^\circ$, $\beta = 87.48(1)^\circ$, $\gamma = 84.13(1)^\circ$, W = 226.5 Å³. Z = 1, $d_x = 2.987$ g cm⁻³, space group P1. These results are in very good agreement with the data in (2).

The crystalline water content of the double salt RbCl \cdot NiCl₂ \cdot 2H₂O was determined by the Karl-Fischer method (12.35 wt%) and by DT analysis (Fig. 5). The figure shows a decrease in the weight of the sample by 12.5 wt% within the temperature range 60-200°C, due to dehydration of the double salt. The endothermic effect at 420°C is related to the melting of the dehydrated product.

The results of both analyses provide evi-

dence for the presence of two water molecules in the composition of the double salt. However, all attempts to grow single crystals suitable for determination of the unit cell parameters of this double salt failed. The X-ray powder diffraction of crystals obtained by the slow evaporation of appropriate aqueous solutions of RbCl and NiCl₂ at 50°C has shown the following parameters of a hexagonal lattice: a = 6.955(1) Å, c = 5.904(2) Å.

This result fits well with the unit cell parameters of the dehydrated $RbCl \cdot NiCl_2$ salt, obtained by Asmussen *et al.* (6). Such a coincidence is rather unexpected, since these authors describe a specific method for its preparation (under dry conditions), in an effort to eliminate the possible hydration of the salt.

The problem concerning the preparation of single crystals and the determination of

FIG. 5. DTA and TG data for the double salt RbCl \cdot NiCl₂ \cdot 2H₂O. Paulik–Paulik–Erdey 1500 apparatus, Type 3427; heating rate 10°C min⁻¹.

the crystal structure of the double salt RbCl \cdot NiCl₂ \cdot 2H₂O still remains.

References

- 1. G. D. SPROUL, Unpublished thesis, University of Illinois (1971) cited after (2).
- 2. J. N. MCELEARNEY, H. FORSTAT, P. T. BAILEY, AND J. R. RICKS, *Phys. Rev. B* 13, 1277 (1976).
- 3. B. Y. ENWIYA, J. SILVER, AND I. E. G. MORRISON, J. Chem. Soc. Dalton Trans., 1039 (1983).
- 4. CHR. BALAREW, V. KARAIVANOVA, AND T. OJKOVA, Commun. Dep. Chem. Bulg. Acad. Sci. 3, 637 (1970).
- F. A. SCHREINEMAKERS, Z. Phys. Chem. 11, 76 (1893); 55, 73 (1906).
- 6. R. W. ASMUSSEN, T. KINDT LARSEN, AND H. SOL-ING, Acta Chem. Scand. 23, 2055 (1969).